MakeItFrom.com
Menu (ESC)

C38500 Bronze vs. S17600 Stainless Steel

C38500 bronze belongs to the copper alloys classification, while S17600 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C38500 bronze and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17
8.6 to 11
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 37
76
Shear Strength, MPa 230
560 to 880
Tensile Strength: Ultimate (UTS), MPa 370
940 to 1490
Tensile Strength: Yield (Proof), MPa 130
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 160
290
Maximum Temperature: Mechanical, °C 110
890
Melting Completion (Liquidus), °C 890
1430
Melting Onset (Solidus), °C 880
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 22
13
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.6
2.9
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 78
850 to 4390
Stiffness to Weight: Axial, points 7.0
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13
34 to 54
Strength to Weight: Bending, points 14
28 to 37
Thermal Diffusivity, mm2/s 40
4.1
Thermal Shock Resistance, points 12
31 to 50

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 55 to 59
0
Iron (Fe), % 0 to 0.35
71.3 to 77.6
Lead (Pb), % 2.5 to 3.5
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
6.0 to 7.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.4 to 1.2
Zinc (Zn), % 36.7 to 42.5
0
Residuals, % 0 to 0.5
0