MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. AISI 201LN Stainless Steel

C40500 penny bronze belongs to the copper alloys classification, while AISI 201LN stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is AISI 201LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 49
25 to 51
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 210 to 310
530 to 680
Tensile Strength: Ultimate (UTS), MPa 270 to 540
740 to 1060
Tensile Strength: Yield (Proof), MPa 79 to 520
350 to 770

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 190
880
Melting Completion (Liquidus), °C 1060
1410
Melting Onset (Solidus), °C 1020
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 42
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 30
12
Density, g/cm3 8.8
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
38
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
230 to 310
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
310 to 1520
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5 to 17
27 to 38
Strength to Weight: Bending, points 10 to 17
24 to 30
Thermal Diffusivity, mm2/s 48
4.0
Thermal Shock Resistance, points 9.5 to 19
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 17.5
Copper (Cu), % 94 to 96
0 to 1.0
Iron (Fe), % 0 to 0.050
67.9 to 73.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
6.4 to 7.5
Nickel (Ni), % 0
4.0 to 5.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 2.1 to 5.3
0
Residuals, % 0 to 0.5
0