MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. EN 1.1152 Steel

C40500 penny bronze belongs to the copper alloys classification, while EN 1.1152 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is EN 1.1152 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 49
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 210 to 310
290 to 340
Tensile Strength: Ultimate (UTS), MPa 270 to 540
400 to 550
Tensile Strength: Yield (Proof), MPa 79 to 520
270 to 440

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 190
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1020
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 42
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 43
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
41 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
200 to 530
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.5 to 17
14 to 19
Strength to Weight: Bending, points 10 to 17
15 to 19
Thermal Diffusivity, mm2/s 48
14
Thermal Shock Resistance, points 9.5 to 19
13 to 17

Alloy Composition

Carbon (C), % 0
0.18 to 0.22
Copper (Cu), % 94 to 96
0 to 0.25
Iron (Fe), % 0 to 0.050
98.6 to 99.52
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 2.1 to 5.3
0
Residuals, % 0 to 0.5
0