MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. EN 1.4527 Stainless Steel

C40500 penny bronze belongs to the copper alloys classification, while EN 1.4527 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is EN 1.4527 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 49
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Tensile Strength: Ultimate (UTS), MPa 270 to 540
480
Tensile Strength: Yield (Proof), MPa 79 to 520
190

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 190
1100
Melting Completion (Liquidus), °C 1060
1410
Melting Onset (Solidus), °C 1020
1360
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 18
15

Otherwise Unclassified Properties

Base Metal Price, % relative 30
32
Density, g/cm3 8.8
8.1
Embodied Carbon, kg CO2/kg material 2.7
5.6
Embodied Energy, MJ/kg 43
78
Embodied Water, L/kg 320
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
150
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
95
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 8.5 to 17
17
Strength to Weight: Bending, points 10 to 17
17
Thermal Diffusivity, mm2/s 48
4.0
Thermal Shock Resistance, points 9.5 to 19
12

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 94 to 96
3.0 to 4.0
Iron (Fe), % 0 to 0.050
37.4 to 48.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
27.5 to 30.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 2.1 to 5.3
0
Residuals, % 0 to 0.5
0