MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. EN 1.4571 Stainless Steel

C40500 penny bronze belongs to the copper alloys classification, while EN 1.4571 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is EN 1.4571 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 49
14 to 40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
78
Shear Strength, MPa 210 to 310
410 to 550
Tensile Strength: Ultimate (UTS), MPa 270 to 540
600 to 900
Tensile Strength: Yield (Proof), MPa 79 to 520
230 to 570

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 190
950
Melting Completion (Liquidus), °C 1060
1440
Melting Onset (Solidus), °C 1020
1400
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 160
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 42
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
19
Density, g/cm3 8.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 43
54
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
130 to 820
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 8.5 to 17
21 to 32
Strength to Weight: Bending, points 10 to 17
20 to 26
Thermal Diffusivity, mm2/s 48
4.0
Thermal Shock Resistance, points 9.5 to 19
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 94 to 96
0
Iron (Fe), % 0 to 0.050
61.7 to 71
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
10.5 to 13.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.7 to 1.3
0
Titanium (Ti), % 0
0 to 0.7
Zinc (Zn), % 2.1 to 5.3
0
Residuals, % 0 to 0.5
0

Comparable Variants