MakeItFrom.com
Menu (ESC)

C40500 Penny Bronze vs. C95800 Bronze

Both C40500 penny bronze and C95800 bronze are copper alloys. They have 81% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C40500 penny bronze and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 3.0 to 49
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Tensile Strength: Ultimate (UTS), MPa 270 to 540
660
Tensile Strength: Yield (Proof), MPa 79 to 520
270

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 190
230
Melting Completion (Liquidus), °C 1060
1060
Melting Onset (Solidus), °C 1020
1040
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 160
36
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 42
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.8
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 43
55
Embodied Water, L/kg 320
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 28 to 1200
310
Stiffness to Weight: Axial, points 7.2
7.9
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 8.5 to 17
22
Strength to Weight: Bending, points 10 to 17
20
Thermal Diffusivity, mm2/s 48
9.9
Thermal Shock Resistance, points 9.5 to 19
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
8.5 to 9.5
Copper (Cu), % 94 to 96
79 to 83.2
Iron (Fe), % 0 to 0.050
3.5 to 4.5
Lead (Pb), % 0 to 0.050
0 to 0.030
Manganese (Mn), % 0
0.8 to 1.5
Nickel (Ni), % 0
4.0 to 5.0
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 2.1 to 5.3
0
Residuals, % 0 to 0.5
0 to 0.5