MakeItFrom.com
Menu (ESC)

C41300 Brass vs. 5154 Aluminum

C41300 brass belongs to the copper alloys classification, while 5154 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C41300 brass and the bottom bar is 5154 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
68
Elongation at Break, % 2.0 to 44
3.4 to 20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 230 to 370
140 to 210
Tensile Strength: Ultimate (UTS), MPa 300 to 630
240 to 360
Tensile Strength: Yield (Proof), MPa 120 to 570
94 to 270

Thermal Properties

Latent Heat of Fusion, J/g 200
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 1040
640
Melting Onset (Solidus), °C 1010
590
Specific Heat Capacity, J/kg-K 380
900
Thermal Conductivity, W/m-K 130
130
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
32
Electrical Conductivity: Equal Weight (Specific), % IACS 31
110

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.7
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.8
Embodied Energy, MJ/kg 44
150
Embodied Water, L/kg 320
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
11 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 1440
64 to 540
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 9.6 to 20
25 to 37
Strength to Weight: Bending, points 11 to 19
32 to 42
Thermal Diffusivity, mm2/s 40
52
Thermal Shock Resistance, points 11 to 22
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
94.4 to 96.8
Chromium (Cr), % 0
0.15 to 0.35
Copper (Cu), % 89 to 93
0 to 0.1
Iron (Fe), % 0 to 0.050
0 to 0.4
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0
3.1 to 3.9
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
0 to 0.25
Tin (Sn), % 0.7 to 1.3
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 5.1 to 10.3
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.15