MakeItFrom.com
Menu (ESC)

C41300 Brass vs. AISI 303 Stainless Steel

C41300 brass belongs to the copper alloys classification, while AISI 303 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C41300 brass and the bottom bar is AISI 303 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 44
40 to 51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 230 to 370
430 to 470
Tensile Strength: Ultimate (UTS), MPa 300 to 630
600 to 690
Tensile Strength: Yield (Proof), MPa 120 to 570
230 to 420

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
930
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1010
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
16
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
15
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 44
42
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 1440
140 to 440
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6 to 20
21 to 25
Strength to Weight: Bending, points 11 to 19
20 to 22
Thermal Diffusivity, mm2/s 40
4.4
Thermal Shock Resistance, points 11 to 22
13 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
67.3 to 74.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 5.1 to 10.3
0
Residuals, % 0 to 0.5
0