MakeItFrom.com
Menu (ESC)

C41300 Brass vs. S32906 Stainless Steel

C41300 brass belongs to the copper alloys classification, while S32906 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C41300 brass and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.0 to 44
28
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 42
81
Shear Strength, MPa 230 to 370
550
Tensile Strength: Ultimate (UTS), MPa 300 to 630
850
Tensile Strength: Yield (Proof), MPa 120 to 570
620

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 1010
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
13
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 31
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
20
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 44
52
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
220
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 1440
950
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 9.6 to 20
30
Strength to Weight: Bending, points 11 to 19
26
Thermal Diffusivity, mm2/s 40
3.6
Thermal Shock Resistance, points 11 to 22
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 89 to 93
0 to 0.8
Iron (Fe), % 0 to 0.050
56.6 to 63.6
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 5.1 to 10.3
0
Residuals, % 0 to 0.5
0