MakeItFrom.com
Menu (ESC)

C41300 Brass vs. S35140 Stainless Steel

C41300 brass belongs to the copper alloys classification, while S35140 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C41300 brass and the bottom bar is S35140 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 44
34
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 53 to 88
88
Shear Modulus, GPa 42
78
Shear Strength, MPa 230 to 370
460
Tensile Strength: Ultimate (UTS), MPa 300 to 630
690
Tensile Strength: Yield (Proof), MPa 120 to 570
310

Thermal Properties

Latent Heat of Fusion, J/g 200
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 1040
1420
Melting Onset (Solidus), °C 1010
1370
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 31
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.7
8.0
Embodied Carbon, kg CO2/kg material 2.7
5.5
Embodied Energy, MJ/kg 44
78
Embodied Water, L/kg 320
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 110
190
Resilience: Unit (Modulus of Resilience), kJ/m3 69 to 1440
250
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 9.6 to 20
24
Strength to Weight: Bending, points 11 to 19
22
Thermal Diffusivity, mm2/s 40
3.7
Thermal Shock Resistance, points 11 to 22
16

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
44.1 to 52.7
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
1.0 to 3.0
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0
25 to 27
Niobium (Nb), % 0
0.25 to 0.75
Nitrogen (N), % 0
0.080 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.7 to 1.3
0
Zinc (Zn), % 5.1 to 10.3
0
Residuals, % 0 to 0.5
0