MakeItFrom.com
Menu (ESC)

C41500 Brass vs. AISI 205 Stainless Steel

C41500 brass belongs to the copper alloys classification, while AISI 205 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is AISI 205 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 42
11 to 51
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 360
560 to 850
Tensile Strength: Ultimate (UTS), MPa 340 to 560
800 to 1430
Tensile Strength: Yield (Proof), MPa 190 to 550
450 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
880
Melting Completion (Liquidus), °C 1030
1380
Melting Onset (Solidus), °C 1010
1340
Specific Heat Capacity, J/kg-K 380
480
Thermal Expansion, µm/m-K 18
18

Otherwise Unclassified Properties

Base Metal Price, % relative 30
11
Density, g/cm3 8.7
7.6
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 45
37
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
150 to 430
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
510 to 3060
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 11 to 18
29 to 52
Strength to Weight: Bending, points 12 to 17
25 to 37
Thermal Shock Resistance, points 12 to 20
16 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.12 to 0.25
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
62.6 to 68.1
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
14 to 15.5
Nickel (Ni), % 0
1.0 to 1.7
Nitrogen (N), % 0
0.32 to 0.4
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0