MakeItFrom.com
Menu (ESC)

C41500 Brass vs. EN 1.4542 Stainless Steel

C41500 brass belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 42
5.7 to 20
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 220 to 360
550 to 860
Tensile Strength: Ultimate (UTS), MPa 340 to 560
880 to 1470
Tensile Strength: Yield (Proof), MPa 190 to 550
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 200
280
Maximum Temperature: Mechanical, °C 180
860
Melting Completion (Liquidus), °C 1030
1430
Melting Onset (Solidus), °C 1010
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 45
39
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
880 to 4360
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
31 to 52
Strength to Weight: Bending, points 12 to 17
26 to 37
Thermal Diffusivity, mm2/s 37
4.3
Thermal Shock Resistance, points 12 to 20
29 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 89 to 93
3.0 to 5.0
Iron (Fe), % 0 to 0.050
69.6 to 79
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0