MakeItFrom.com
Menu (ESC)

C41500 Brass vs. EN 1.4913 Stainless Steel

C41500 brass belongs to the copper alloys classification, while EN 1.4913 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is EN 1.4913 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 42
14 to 22
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
75
Shear Strength, MPa 220 to 360
550 to 590
Tensile Strength: Ultimate (UTS), MPa 340 to 560
870 to 980
Tensile Strength: Yield (Proof), MPa 190 to 550
480 to 850

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 180
700
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1010
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
24
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 29
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.0
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.9
Embodied Energy, MJ/kg 45
41
Embodied Water, L/kg 330
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
130 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
600 to 1860
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
31 to 35
Strength to Weight: Bending, points 12 to 17
26 to 28
Thermal Diffusivity, mm2/s 37
6.5
Thermal Shock Resistance, points 12 to 20
31 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0015
Carbon (C), % 0
0.17 to 0.23
Chromium (Cr), % 0
10 to 11.5
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
84.5 to 88.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.5 to 0.8
Nickel (Ni), % 0
0.2 to 0.6
Niobium (Nb), % 0
0.25 to 0.55
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 1.5 to 2.2
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0