MakeItFrom.com
Menu (ESC)

C41500 Brass vs. CC332G Bronze

Both C41500 brass and CC332G bronze are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 2.0 to 42
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 340 to 560
620
Tensile Strength: Yield (Proof), MPa 190 to 550
250

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 1030
1060
Melting Onset (Solidus), °C 1010
1010
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 120
45
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
11
Electrical Conductivity: Equal Weight (Specific), % IACS 29
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
29
Density, g/cm3 8.7
8.3
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 45
55
Embodied Water, L/kg 330
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
270
Stiffness to Weight: Axial, points 7.1
7.7
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 11 to 18
21
Strength to Weight: Bending, points 12 to 17
19
Thermal Diffusivity, mm2/s 37
12
Thermal Shock Resistance, points 12 to 20
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
8.5 to 10.5
Copper (Cu), % 89 to 93
80 to 86
Iron (Fe), % 0 to 0.050
1.0 to 3.0
Lead (Pb), % 0 to 0.1
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
1.5 to 4.0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 1.5 to 2.2
0 to 0.2
Zinc (Zn), % 4.2 to 9.5
0 to 0.5
Residuals, % 0 to 0.5
0