MakeItFrom.com
Menu (ESC)

C41500 Brass vs. SAE-AISI 1010 Steel

C41500 brass belongs to the copper alloys classification, while SAE-AISI 1010 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is SAE-AISI 1010 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 42
22 to 31
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 220 to 360
230 to 250
Tensile Strength: Ultimate (UTS), MPa 340 to 560
350 to 400
Tensile Strength: Yield (Proof), MPa 190 to 550
190 to 330

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 1030
1470
Melting Onset (Solidus), °C 1010
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
47
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
12
Electrical Conductivity: Equal Weight (Specific), % IACS 29
14

Otherwise Unclassified Properties

Base Metal Price, % relative 30
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 45
18
Embodied Water, L/kg 330
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
82 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
100 to 290
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 18
12 to 14
Strength to Weight: Bending, points 12 to 17
14 to 15
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 12 to 20
11 to 13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.080 to 0.13
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
99.18 to 99.62
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0