MakeItFrom.com
Menu (ESC)

C41500 Brass vs. SAE-AISI 4028 Steel

C41500 brass belongs to the copper alloys classification, while SAE-AISI 4028 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is SAE-AISI 4028 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 42
14 to 23
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 220 to 360
310 to 380
Tensile Strength: Ultimate (UTS), MPa 340 to 560
490 to 630
Tensile Strength: Yield (Proof), MPa 190 to 550
260 to 520

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1010
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 29
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 30
2.1
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.5
Embodied Energy, MJ/kg 45
19
Embodied Water, L/kg 330
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
81 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
180 to 720
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 11 to 18
17 to 22
Strength to Weight: Bending, points 12 to 17
18 to 21
Thermal Diffusivity, mm2/s 37
13
Thermal Shock Resistance, points 12 to 20
16 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.25 to 0.3
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
98.1 to 98.7
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.7 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0.035 to 0.050
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0