MakeItFrom.com
Menu (ESC)

C41500 Brass vs. S21640 Stainless Steel

C41500 brass belongs to the copper alloys classification, while S21640 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 42
46
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 220 to 360
520
Tensile Strength: Ultimate (UTS), MPa 340 to 560
740
Tensile Strength: Yield (Proof), MPa 190 to 550
350

Thermal Properties

Latent Heat of Fusion, J/g 200
290
Maximum Temperature: Mechanical, °C 180
940
Melting Completion (Liquidus), °C 1030
1430
Melting Onset (Solidus), °C 1010
1380
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 30
17
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 45
51
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
280
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
300
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
27
Strength to Weight: Bending, points 12 to 17
23
Thermal Diffusivity, mm2/s 37
4.0
Thermal Shock Resistance, points 12 to 20
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17.5 to 19.5
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
63 to 74.3
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 0
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0
0.080 to 0.3
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0