MakeItFrom.com
Menu (ESC)

C41500 Brass vs. S30815 Stainless Steel

C41500 brass belongs to the copper alloys classification, while S30815 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C41500 brass and the bottom bar is S30815 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 42
45
Poisson's Ratio 0.33
0.28
Rockwell B Hardness 62 to 90
82
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 360
480
Tensile Strength: Ultimate (UTS), MPa 340 to 560
680
Tensile Strength: Yield (Proof), MPa 190 to 550
350

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
1020
Melting Completion (Liquidus), °C 1030
1400
Melting Onset (Solidus), °C 1010
1360
Specific Heat Capacity, J/kg-K 380
490
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 29
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 30
17
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 330
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 11 to 120
260
Resilience: Unit (Modulus of Resilience), kJ/m3 160 to 1340
310
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 11 to 18
25
Strength to Weight: Bending, points 12 to 17
22
Thermal Diffusivity, mm2/s 37
4.0
Thermal Shock Resistance, points 12 to 20
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0.030 to 0.080
Chromium (Cr), % 0
20 to 22
Copper (Cu), % 89 to 93
0
Iron (Fe), % 0 to 0.050
62.8 to 68.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 0.8
Nickel (Ni), % 0
10 to 12
Nitrogen (N), % 0
0.14 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.4 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.5 to 2.2
0
Zinc (Zn), % 4.2 to 9.5
0
Residuals, % 0 to 0.5
0