MakeItFrom.com
Menu (ESC)

C42200 Brass vs. EN 1.4877 Stainless Steel

C42200 brass belongs to the copper alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 46
36
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
79
Shear Strength, MPa 210 to 350
420
Tensile Strength: Ultimate (UTS), MPa 300 to 610
630
Tensile Strength: Yield (Proof), MPa 100 to 570
200

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 1040
1400
Melting Onset (Solidus), °C 1020
1360
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
37
Density, g/cm3 8.6
8.0
Embodied Carbon, kg CO2/kg material 2.7
6.2
Embodied Energy, MJ/kg 44
89
Embodied Water, L/kg 320
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
180
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
100
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 9.5 to 19
22
Strength to Weight: Bending, points 11 to 18
20
Thermal Diffusivity, mm2/s 39
3.2
Thermal Shock Resistance, points 10 to 21
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
36.4 to 42.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.35
0 to 0.020
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.8 to 1.4
0
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0