MakeItFrom.com
Menu (ESC)

C42200 Brass vs. EN 1.4923 Stainless Steel

C42200 brass belongs to the copper alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 46
12 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 210 to 350
540 to 590
Tensile Strength: Ultimate (UTS), MPa 300 to 610
870 to 980
Tensile Strength: Yield (Proof), MPa 100 to 570
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 200
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 130
24
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 32
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
8.0
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 44
41
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
570 to 1580
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.5 to 19
31 to 35
Strength to Weight: Bending, points 11 to 18
26 to 28
Thermal Diffusivity, mm2/s 39
6.5
Thermal Shock Resistance, points 10 to 21
30 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 86 to 89
0
Iron (Fe), % 0 to 0.050
83.5 to 87.1
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 0
0.3 to 0.8
Phosphorus (P), % 0 to 0.35
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.8 to 1.4
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 8.7 to 13.2
0
Residuals, % 0 to 0.5
0

Comparable Variants