MakeItFrom.com
Menu (ESC)

C42200 Brass vs. CC382H Copper-nickel

Both C42200 brass and CC382H copper-nickel are copper alloys. They have 66% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C42200 brass and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
140
Elongation at Break, % 2.0 to 46
20
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
53
Tensile Strength: Ultimate (UTS), MPa 300 to 610
490
Tensile Strength: Yield (Proof), MPa 100 to 570
290

Thermal Properties

Latent Heat of Fusion, J/g 200
240
Maximum Temperature: Mechanical, °C 170
260
Melting Completion (Liquidus), °C 1040
1180
Melting Onset (Solidus), °C 1020
1120
Specific Heat Capacity, J/kg-K 380
410
Thermal Conductivity, W/m-K 130
30
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 32
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
41
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 2.7
5.2
Embodied Energy, MJ/kg 44
76
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12 to 110
85
Resilience: Unit (Modulus of Resilience), kJ/m3 49 to 1460
290
Stiffness to Weight: Axial, points 7.2
8.8
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 9.5 to 19
15
Strength to Weight: Bending, points 11 to 18
16
Thermal Diffusivity, mm2/s 39
8.2
Thermal Shock Resistance, points 10 to 21
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
1.5 to 2.0
Copper (Cu), % 86 to 89
62.8 to 68.4
Iron (Fe), % 0 to 0.050
0.5 to 1.0
Lead (Pb), % 0 to 0.050
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0.5 to 1.0
Nickel (Ni), % 0
29 to 32
Phosphorus (P), % 0 to 0.35
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Tin (Sn), % 0.8 to 1.4
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 8.7 to 13.2
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.5
0