MakeItFrom.com
Menu (ESC)

C42600 Brass vs. ASTM A228 Music Wire

C42600 brass belongs to the copper alloys classification, while ASTM A228 music wire belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C42600 brass and the bottom bar is ASTM A228 music wire.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.1 to 40
12
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
72
Shear Strength, MPa 280 to 470
1470
Tensile Strength: Ultimate (UTS), MPa 410 to 830
2450
Tensile Strength: Yield (Proof), MPa 220 to 810
2050

Thermal Properties

Latent Heat of Fusion, J/g 200
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 1030
1450
Melting Onset (Solidus), °C 1010
1410
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
49
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 26
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 31
1.8
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 48
19
Embodied Water, L/kg 340
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 140
280
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 13 to 27
87
Strength to Weight: Bending, points 14 to 23
52
Thermal Diffusivity, mm2/s 33
13
Thermal Shock Resistance, points 15 to 29
79

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.7 to 1.0
Copper (Cu), % 87 to 90
0
Iron (Fe), % 0.050 to 0.2
98 to 99
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.2 to 0.6
Nickel (Ni), % 0.050 to 0.2
0
Phosphorus (P), % 0.020 to 0.050
0 to 0.025
Silicon (Si), % 0
0.1 to 0.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 2.5 to 4.0
0
Zinc (Zn), % 5.3 to 10.4
0
Residuals, % 0 to 0.2
0