MakeItFrom.com
Menu (ESC)

C42600 Brass vs. CC330G Bronze

Both C42600 brass and CC330G bronze are copper alloys. They have 89% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C42600 brass and the bottom bar is CC330G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 1.1 to 40
20
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
42
Tensile Strength: Ultimate (UTS), MPa 410 to 830
530
Tensile Strength: Yield (Proof), MPa 220 to 810
190

Thermal Properties

Latent Heat of Fusion, J/g 200
230
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 1030
1050
Melting Onset (Solidus), °C 1010
1000
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 110
62
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
14
Electrical Conductivity: Equal Weight (Specific), % IACS 26
15

Otherwise Unclassified Properties

Base Metal Price, % relative 31
29
Density, g/cm3 8.7
8.4
Embodied Carbon, kg CO2/kg material 2.9
3.2
Embodied Energy, MJ/kg 48
52
Embodied Water, L/kg 340
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 9.4 to 140
82
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 2970
170
Stiffness to Weight: Axial, points 7.1
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 13 to 27
18
Strength to Weight: Bending, points 14 to 23
17
Thermal Diffusivity, mm2/s 33
17
Thermal Shock Resistance, points 15 to 29
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
8.0 to 10.5
Copper (Cu), % 87 to 90
87 to 92
Iron (Fe), % 0.050 to 0.2
0 to 1.2
Lead (Pb), % 0 to 0.050
0 to 0.3
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0.050 to 0.2
0 to 1.0
Phosphorus (P), % 0.020 to 0.050
0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 2.5 to 4.0
0 to 0.3
Zinc (Zn), % 5.3 to 10.4
0 to 0.5
Residuals, % 0 to 0.2
0