MakeItFrom.com
Menu (ESC)

C43000 Brass vs. ASTM A182 Grade F10

C43000 brass belongs to the copper alloys classification, while ASTM A182 grade F10 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is ASTM A182 grade F10.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 230 to 410
420
Tensile Strength: Ultimate (UTS), MPa 320 to 710
630
Tensile Strength: Yield (Proof), MPa 130 to 550
230

Thermal Properties

Latent Heat of Fusion, J/g 190
290
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 1000
1370
Specific Heat Capacity, J/kg-K 380
470
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
15
Electrical Conductivity: Equal Weight (Specific), % IACS 28
17

Otherwise Unclassified Properties

Base Metal Price, % relative 29
18
Density, g/cm3 8.6
7.9
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 46
51
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
170
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
140
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 23
22
Strength to Weight: Bending, points 12 to 20
21
Thermal Shock Resistance, points 11 to 25
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
7.0 to 9.0
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
66.5 to 72.4
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.5 to 0.8
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
1.0 to 1.4
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0