MakeItFrom.com
Menu (ESC)

C43000 Brass vs. EN 1.4587 Stainless Steel

C43000 brass belongs to the copper alloys classification, while EN 1.4587 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is EN 1.4587 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
80
Tensile Strength: Ultimate (UTS), MPa 320 to 710
540
Tensile Strength: Yield (Proof), MPa 130 to 550
250

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 1000
1370
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
17
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 28
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.6
8.1
Embodied Carbon, kg CO2/kg material 2.8
6.3
Embodied Energy, MJ/kg 46
87
Embodied Water, L/kg 330
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
150
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
150
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 10 to 23
18
Strength to Weight: Bending, points 12 to 20
18
Thermal Diffusivity, mm2/s 36
4.5
Thermal Shock Resistance, points 11 to 25
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 84 to 87
2.0 to 3.0
Iron (Fe), % 0 to 0.050
32.7 to 41.9
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0
28 to 30
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 1.7 to 2.7
0
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0