MakeItFrom.com
Menu (ESC)

C43000 Brass vs. CC332G Bronze

Both C43000 brass and CC332G bronze are copper alloys. They have 83% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 3.0 to 55
22
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 320 to 710
620
Tensile Strength: Yield (Proof), MPa 130 to 550
250

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 170
220
Melting Completion (Liquidus), °C 1030
1060
Melting Onset (Solidus), °C 1000
1010
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 120
45
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
11
Electrical Conductivity: Equal Weight (Specific), % IACS 28
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
29
Density, g/cm3 8.6
8.3
Embodied Carbon, kg CO2/kg material 2.8
3.4
Embodied Energy, MJ/kg 46
55
Embodied Water, L/kg 330
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
270
Stiffness to Weight: Axial, points 7.1
7.7
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 10 to 23
21
Strength to Weight: Bending, points 12 to 20
19
Thermal Diffusivity, mm2/s 36
12
Thermal Shock Resistance, points 11 to 25
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
8.5 to 10.5
Copper (Cu), % 84 to 87
80 to 86
Iron (Fe), % 0 to 0.050
1.0 to 3.0
Lead (Pb), % 0 to 0.1
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
1.5 to 4.0
Silicon (Si), % 0
0 to 0.2
Tin (Sn), % 1.7 to 2.7
0 to 0.2
Zinc (Zn), % 9.7 to 14.3
0 to 0.5
Residuals, % 0 to 0.5
0