MakeItFrom.com
Menu (ESC)

C43000 Brass vs. C82700 Copper

Both C43000 brass and C82700 copper are copper alloys. They have 86% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is C82700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 3.0 to 55
1.8
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 42
46
Tensile Strength: Ultimate (UTS), MPa 320 to 710
1200
Tensile Strength: Yield (Proof), MPa 130 to 550
1020

Thermal Properties

Latent Heat of Fusion, J/g 190
240
Maximum Temperature: Mechanical, °C 170
300
Melting Completion (Liquidus), °C 1030
950
Melting Onset (Solidus), °C 1000
860
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
20
Electrical Conductivity: Equal Weight (Specific), % IACS 28
21

Otherwise Unclassified Properties

Density, g/cm3 8.6
8.7
Embodied Carbon, kg CO2/kg material 2.8
12
Embodied Energy, MJ/kg 46
180
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
21
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
4260
Stiffness to Weight: Axial, points 7.1
7.8
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 10 to 23
38
Strength to Weight: Bending, points 12 to 20
29
Thermal Diffusivity, mm2/s 36
39
Thermal Shock Resistance, points 11 to 25
41

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
2.4 to 2.6
Chromium (Cr), % 0
0 to 0.090
Copper (Cu), % 84 to 87
94.6 to 96.7
Iron (Fe), % 0 to 0.050
0 to 0.25
Lead (Pb), % 0 to 0.1
0 to 0.020
Nickel (Ni), % 0
1.0 to 1.5
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 1.7 to 2.7
0 to 0.1
Zinc (Zn), % 9.7 to 14.3
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.5