MakeItFrom.com
Menu (ESC)

C43000 Brass vs. C91000 Bronze

Both C43000 brass and C91000 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 3.0 to 55
7.0
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
39
Tensile Strength: Ultimate (UTS), MPa 320 to 710
230
Tensile Strength: Yield (Proof), MPa 130 to 550
150

Thermal Properties

Latent Heat of Fusion, J/g 190
180
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 1030
960
Melting Onset (Solidus), °C 1000
820
Specific Heat Capacity, J/kg-K 380
360
Thermal Conductivity, W/m-K 120
64
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 28
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
37
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 2.8
4.1
Embodied Energy, MJ/kg 46
67
Embodied Water, L/kg 330
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
14
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
100
Stiffness to Weight: Axial, points 7.1
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 10 to 23
7.5
Strength to Weight: Bending, points 12 to 20
9.7
Thermal Diffusivity, mm2/s 36
20
Thermal Shock Resistance, points 11 to 25
8.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 84 to 87
84 to 86
Iron (Fe), % 0 to 0.050
0 to 0.1
Lead (Pb), % 0 to 0.1
0 to 0.2
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 1.7 to 2.7
14 to 16
Zinc (Zn), % 9.7 to 14.3
0 to 1.5
Residuals, % 0 to 0.5
0 to 0.6