MakeItFrom.com
Menu (ESC)

C43000 Brass vs. N07776 Nickel

C43000 brass belongs to the copper alloys classification, while N07776 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is N07776 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
39
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 42
79
Shear Strength, MPa 230 to 410
470
Tensile Strength: Ultimate (UTS), MPa 320 to 710
700
Tensile Strength: Yield (Proof), MPa 130 to 550
270

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
970
Melting Completion (Liquidus), °C 1030
1550
Melting Onset (Solidus), °C 1000
1500
Specific Heat Capacity, J/kg-K 380
430
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 29
85
Density, g/cm3 8.6
8.6
Embodied Carbon, kg CO2/kg material 2.8
15
Embodied Energy, MJ/kg 46
210
Embodied Water, L/kg 330
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
220
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
180
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 10 to 23
22
Strength to Weight: Bending, points 12 to 20
20
Thermal Shock Resistance, points 11 to 25
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 2.0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
12 to 22
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
0 to 24.5
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
9.0 to 15
Nickel (Ni), % 0
50 to 60
Niobium (Nb), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 1.7 to 2.7
0
Titanium (Ti), % 0
0 to 1.0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0