MakeItFrom.com
Menu (ESC)

C43000 Brass vs. N10675 Nickel

C43000 brass belongs to the copper alloys classification, while N10675 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is N10675 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 3.0 to 55
47
Poisson's Ratio 0.33
0.31
Rockwell B Hardness 30 to 100
88
Shear Modulus, GPa 42
85
Shear Strength, MPa 230 to 410
610
Tensile Strength: Ultimate (UTS), MPa 320 to 710
860
Tensile Strength: Yield (Proof), MPa 130 to 550
400

Thermal Properties

Latent Heat of Fusion, J/g 190
320
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 1030
1420
Melting Onset (Solidus), °C 1000
1370
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 28
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
80
Density, g/cm3 8.6
9.3
Embodied Carbon, kg CO2/kg material 2.8
16
Embodied Energy, MJ/kg 46
210
Embodied Water, L/kg 330
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
330
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
350
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 19
22
Strength to Weight: Axial, points 10 to 23
26
Strength to Weight: Bending, points 12 to 20
22
Thermal Diffusivity, mm2/s 36
3.1
Thermal Shock Resistance, points 11 to 25
26

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
1.0 to 3.0
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 84 to 87
0 to 0.2
Iron (Fe), % 0 to 0.050
1.0 to 3.0
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0 to 3.0
Molybdenum (Mo), % 0
27 to 32
Nickel (Ni), % 0
51.3 to 71
Niobium (Nb), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tantalum (Ta), % 0
0 to 0.2
Tin (Sn), % 1.7 to 2.7
0
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 3.0
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 9.7 to 14.3
0 to 0.1
Residuals, % 0 to 0.5
0