MakeItFrom.com
Menu (ESC)

C43000 Brass vs. S64512 Stainless Steel

C43000 brass belongs to the copper alloys classification, while S64512 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C43000 brass and the bottom bar is S64512 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
17
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 230 to 410
700
Tensile Strength: Ultimate (UTS), MPa 320 to 710
1140
Tensile Strength: Yield (Proof), MPa 130 to 550
890

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 1030
1460
Melting Onset (Solidus), °C 1000
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 120
28
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 28
4.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 46
47
Embodied Water, L/kg 330
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20 to 150
180
Resilience: Unit (Modulus of Resilience), kJ/m3 82 to 1350
2020
Stiffness to Weight: Axial, points 7.1
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 23
40
Strength to Weight: Bending, points 12 to 20
31
Thermal Diffusivity, mm2/s 36
7.5
Thermal Shock Resistance, points 11 to 25
42

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
80.6 to 84.7
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0
0.5 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
2.0 to 3.0
Nitrogen (N), % 0
0.010 to 0.050
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 1.7 to 2.7
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 9.7 to 14.3
0
Residuals, % 0 to 0.5
0