MakeItFrom.com
Menu (ESC)

C43400 Brass vs. ACI-ASTM CB6 Steel

C43400 brass belongs to the copper alloys classification, while ACI-ASTM CB6 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 49
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Tensile Strength: Ultimate (UTS), MPa 310 to 690
880
Tensile Strength: Yield (Proof), MPa 110 to 560
660

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 1020
1440
Melting Onset (Solidus), °C 990
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 140
17
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 8.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.5
Embodied Energy, MJ/kg 44
36
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
1110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 22
32
Strength to Weight: Bending, points 12 to 20
26
Thermal Diffusivity, mm2/s 41
4.6
Thermal Shock Resistance, points 11 to 24
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
74.4 to 81
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
3.5 to 5.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0