MakeItFrom.com
Menu (ESC)

C43400 Brass vs. AISI 420F Stainless Steel

C43400 brass belongs to the copper alloys classification, while AISI 420F stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is AISI 420F stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 49
18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 250 to 390
460
Tensile Strength: Ultimate (UTS), MPa 310 to 690
740
Tensile Strength: Yield (Proof), MPa 110 to 560
430

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 1020
1440
Melting Onset (Solidus), °C 990
1390
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 140
25
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 32
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.0
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 44
28
Embodied Water, L/kg 320
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
480
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 22
27
Strength to Weight: Bending, points 12 to 20
23
Thermal Diffusivity, mm2/s 41
6.8
Thermal Shock Resistance, points 11 to 24
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.3 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
82.4 to 87.6
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.060
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0