MakeItFrom.com
Menu (ESC)

C43400 Brass vs. AISI 440B Stainless Steel

C43400 brass belongs to the copper alloys classification, while AISI 440B stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is AISI 440B stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 49
3.0 to 18
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 250 to 390
460 to 1110
Tensile Strength: Ultimate (UTS), MPa 310 to 690
740 to 1930
Tensile Strength: Yield (Proof), MPa 110 to 560
430 to 1860

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 1020
1480
Melting Onset (Solidus), °C 990
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 140
23
Thermal Expansion, µm/m-K 19
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 32
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.0
Density, g/cm3 8.6
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 44
31
Embodied Water, L/kg 320
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
57 to 110
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 22
27 to 70
Strength to Weight: Bending, points 12 to 20
24 to 45
Thermal Diffusivity, mm2/s 41
6.1
Thermal Shock Resistance, points 11 to 24
27 to 70

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.75 to 1.0
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
78.2 to 83.3
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0