MakeItFrom.com
Menu (ESC)

C43400 Brass vs. Grade CX2MW Nickel

C43400 brass belongs to the copper alloys classification, while grade CX2MW nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Elongation at Break, % 3.0 to 49
34
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 42
84
Tensile Strength: Ultimate (UTS), MPa 310 to 690
620
Tensile Strength: Yield (Proof), MPa 110 to 560
350

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 1020
1550
Melting Onset (Solidus), °C 990
1490
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 140
10
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 32
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
65
Density, g/cm3 8.6
8.9
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 44
170
Embodied Water, L/kg 320
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
290
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 10 to 22
19
Strength to Weight: Bending, points 12 to 20
18
Thermal Diffusivity, mm2/s 41
2.7
Thermal Shock Resistance, points 11 to 24
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20 to 22.5
Copper (Cu), % 84 to 87
0
Iron (Fe), % 0 to 0.050
2.0 to 6.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
51.3 to 63
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.4 to 1.0
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0