MakeItFrom.com
Menu (ESC)

C43400 Brass vs. C95400 Bronze

Both C43400 brass and C95400 bronze are copper alloys. They have 85% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43400 brass and the bottom bar is C95400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 3.0 to 49
8.1 to 16
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 310 to 690
600 to 710
Tensile Strength: Yield (Proof), MPa 110 to 560
240 to 360

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 170
230
Melting Completion (Liquidus), °C 1020
1040
Melting Onset (Solidus), °C 990
1030
Specific Heat Capacity, J/kg-K 380
440
Thermal Conductivity, W/m-K 140
59
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
13
Electrical Conductivity: Equal Weight (Specific), % IACS 32
14

Otherwise Unclassified Properties

Base Metal Price, % relative 28
27
Density, g/cm3 8.6
8.2
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 44
53
Embodied Water, L/kg 320
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 120
48 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 57 to 1420
250 to 560
Stiffness to Weight: Axial, points 7.2
7.7
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 10 to 22
20 to 24
Strength to Weight: Bending, points 12 to 20
19 to 22
Thermal Diffusivity, mm2/s 41
16
Thermal Shock Resistance, points 11 to 24
21 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
10 to 11.5
Copper (Cu), % 84 to 87
83 to 87
Iron (Fe), % 0 to 0.050
3.0 to 5.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 1.5
Tin (Sn), % 0.4 to 1.0
0
Zinc (Zn), % 11.4 to 15.6
0
Residuals, % 0 to 0.5
0 to 0.5