MakeItFrom.com
Menu (ESC)

C43500 Brass vs. AISI 201L Stainless Steel

C43500 brass belongs to the copper alloys classification, while AISI 201L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C43500 brass and the bottom bar is AISI 201L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.5 to 46
22 to 46
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 310
520 to 660
Tensile Strength: Ultimate (UTS), MPa 320 to 530
740 to 1040
Tensile Strength: Yield (Proof), MPa 120 to 480
290 to 790

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
880
Melting Completion (Liquidus), °C 1000
1410
Melting Onset (Solidus), °C 970
1370
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 8.5
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 45
38
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
220 to 1570
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 17
27 to 37
Strength to Weight: Bending, points 12 to 17
24 to 30
Thermal Diffusivity, mm2/s 37
4.0
Thermal Shock Resistance, points 11 to 18
16 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 79 to 83
0
Iron (Fe), % 0 to 0.050
67.9 to 75
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
5.5 to 7.5
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Zinc (Zn), % 15.4 to 20.4
0
Residuals, % 0 to 0.3
0