MakeItFrom.com
Menu (ESC)

C43500 Brass vs. AISI 302 Stainless Steel

C43500 brass belongs to the copper alloys classification, while AISI 302 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C43500 brass and the bottom bar is AISI 302 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.5 to 46
4.5 to 46
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 220 to 310
400 to 830
Tensile Strength: Ultimate (UTS), MPa 320 to 530
580 to 1430
Tensile Strength: Yield (Proof), MPa 120 to 480
230 to 1100

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
710
Melting Completion (Liquidus), °C 1000
1420
Melting Onset (Solidus), °C 970
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 30
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
15
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 45
42
Embodied Water, L/kg 320
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
59 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
140 to 3070
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10 to 17
21 to 51
Strength to Weight: Bending, points 12 to 17
20 to 36
Thermal Diffusivity, mm2/s 37
4.4
Thermal Shock Resistance, points 11 to 18
12 to 31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 79 to 83
0
Iron (Fe), % 0 to 0.050
67.9 to 75
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.6 to 1.2
0
Zinc (Zn), % 15.4 to 20.4
0
Residuals, % 0 to 0.3
0