MakeItFrom.com
Menu (ESC)

C43500 Brass vs. C18100 Copper

Both C43500 brass and C18100 copper are copper alloys. They have 81% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C43500 brass and the bottom bar is C18100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 8.5 to 46
8.3
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 42
47
Shear Strength, MPa 220 to 310
300
Tensile Strength: Ultimate (UTS), MPa 320 to 530
510
Tensile Strength: Yield (Proof), MPa 120 to 480
460

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 1000
1080
Melting Onset (Solidus), °C 970
1020
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
320
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
80
Electrical Conductivity: Equal Weight (Specific), % IACS 30
81

Otherwise Unclassified Properties

Base Metal Price, % relative 28
31
Density, g/cm3 8.5
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 44 to 120
40
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 1040
900
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 10 to 17
16
Strength to Weight: Bending, points 12 to 17
16
Thermal Diffusivity, mm2/s 37
94
Thermal Shock Resistance, points 11 to 18
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Chromium (Cr), % 0
0.4 to 1.2
Copper (Cu), % 79 to 83
98.7 to 99.49
Iron (Fe), % 0 to 0.050
0
Lead (Pb), % 0 to 0.090
0
Magnesium (Mg), % 0
0.030 to 0.060
Tin (Sn), % 0.6 to 1.2
0
Zinc (Zn), % 15.4 to 20.4
0
Zirconium (Zr), % 0
0.080 to 0.2
Residuals, % 0 to 0.3
0 to 0.5