MakeItFrom.com
Menu (ESC)

C44400 Brass vs. 390.0 Aluminum

C44400 brass belongs to the copper alloys classification, while 390.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C44400 brass and the bottom bar is 390.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
75
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 41
28
Tensile Strength: Ultimate (UTS), MPa 350
280 to 300
Tensile Strength: Yield (Proof), MPa 120
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 180
640
Maximum Temperature: Mechanical, °C 140
170
Melting Completion (Liquidus), °C 940
650
Melting Onset (Solidus), °C 900
560
Specific Heat Capacity, J/kg-K 380
880
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
24 to 25
Electrical Conductivity: Equal Weight (Specific), % IACS 27
79 to 83

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 2.8
7.3
Embodied Energy, MJ/kg 46
130
Embodied Water, L/kg 330
950

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 65
380 to 470
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
52
Strength to Weight: Axial, points 12
28 to 30
Strength to Weight: Bending, points 13
35 to 36
Thermal Diffusivity, mm2/s 35
56
Thermal Shock Resistance, points 12
14 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
74.5 to 79.6
Antimony (Sb), % 0.020 to 0.1
0
Copper (Cu), % 70 to 73
4.0 to 5.0
Iron (Fe), % 0 to 0.060
0 to 1.3
Lead (Pb), % 0 to 0.070
0
Magnesium (Mg), % 0
0.45 to 0.65
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0
16 to 18
Tin (Sn), % 0.9 to 1.2
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 25.2 to 29.1
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.2