MakeItFrom.com
Menu (ESC)

C44400 Brass vs. EN 1.4606 Stainless Steel

C44400 brass belongs to the copper alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C44400 brass and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
75
Tensile Strength: Ultimate (UTS), MPa 350
600 to 1020
Tensile Strength: Yield (Proof), MPa 120
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
910
Melting Completion (Liquidus), °C 940
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
14
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
26
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.8
6.0
Embodied Energy, MJ/kg 46
87
Embodied Water, L/kg 330
170

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 65
200 to 1010
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 12
21 to 36
Strength to Weight: Bending, points 13
20 to 28
Thermal Diffusivity, mm2/s 35
3.7
Thermal Shock Resistance, points 12
21 to 35

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.35
Antimony (Sb), % 0.020 to 0.1
0
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 70 to 73
0
Iron (Fe), % 0 to 0.060
49.2 to 59
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 0
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.9 to 1.2
0
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 25.2 to 29.1
0
Residuals, % 0 to 0.4
0