MakeItFrom.com
Menu (ESC)

C44400 Brass vs. S33425 Stainless Steel

C44400 brass belongs to the copper alloys classification, while S33425 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C44400 brass and the bottom bar is S33425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 350
580
Tensile Strength: Yield (Proof), MPa 120
230

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 140
1100
Melting Completion (Liquidus), °C 940
1430
Melting Onset (Solidus), °C 900
1380
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
14
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
27
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.8
5.1
Embodied Energy, MJ/kg 46
71
Embodied Water, L/kg 330
190

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 65
140
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 12
20
Strength to Weight: Bending, points 13
19
Thermal Diffusivity, mm2/s 35
3.7
Thermal Shock Resistance, points 12
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.15 to 0.6
Antimony (Sb), % 0.020 to 0.1
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 70 to 73
0
Iron (Fe), % 0 to 0.060
47.2 to 56.7
Lead (Pb), % 0 to 0.070
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
20 to 23
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.9 to 1.2
0
Titanium (Ti), % 0
0.15 to 0.6
Zinc (Zn), % 25.2 to 29.1
0
Residuals, % 0 to 0.4
0