MakeItFrom.com
Menu (ESC)

C46200 Brass vs. SAE-AISI 81B45 Steel

C46200 brass belongs to the copper alloys classification, while SAE-AISI 81B45 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is SAE-AISI 81B45 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 17 to 34
12 to 24
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 240 to 290
340 to 400
Tensile Strength: Ultimate (UTS), MPa 370 to 480
540 to 670
Tensile Strength: Yield (Proof), MPa 120 to 290
350 to 560

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
410
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
2.3
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 46
20
Embodied Water, L/kg 330
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
77 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
320 to 840
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 16
19 to 24
Strength to Weight: Bending, points 14 to 17
19 to 22
Thermal Diffusivity, mm2/s 35
11
Thermal Shock Resistance, points 12 to 16
17 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0
0.43 to 0.48
Chromium (Cr), % 0
0.35 to 0.55
Copper (Cu), % 62 to 65
0
Iron (Fe), % 0 to 0.1
97 to 98
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0.75 to 1.0
Molybdenum (Mo), % 0
0.080 to 0.15
Nickel (Ni), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 33.3 to 37.5
0
Residuals, % 0 to 0.4
0