MakeItFrom.com
Menu (ESC)

C46200 Brass vs. S32750 Stainless Steel

C46200 brass belongs to the copper alloys classification, while S32750 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C46200 brass and the bottom bar is S32750 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 17 to 34
17
Poisson's Ratio 0.31
0.27
Shear Modulus, GPa 40
81
Shear Strength, MPa 240 to 290
530
Tensile Strength: Ultimate (UTS), MPa 370 to 480
860
Tensile Strength: Yield (Proof), MPa 120 to 290
590

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 800
1400
Specific Heat Capacity, J/kg-K 380
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 20
12

Otherwise Unclassified Properties

Base Metal Price, % relative 24
21
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 2.7
4.1
Embodied Energy, MJ/kg 46
56
Embodied Water, L/kg 330
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 69 to 100
130
Resilience: Unit (Modulus of Resilience), kJ/m3 72 to 400
860
Stiffness to Weight: Axial, points 7.2
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 16
31
Strength to Weight: Bending, points 14 to 17
26
Thermal Diffusivity, mm2/s 35
4.0
Thermal Shock Resistance, points 12 to 16
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 62 to 65
0 to 0.5
Iron (Fe), % 0 to 0.1
58.1 to 66.8
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
3.0 to 5.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 33.3 to 37.5
0
Residuals, % 0 to 0.4
0