MakeItFrom.com
Menu (ESC)

C46400 Brass vs. CC765S Brass

Both C46400 brass and CC765S brass are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is CC765S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 17 to 40
21
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
42
Tensile Strength: Ultimate (UTS), MPa 400 to 500
540
Tensile Strength: Yield (Proof), MPa 160 to 320
220

Thermal Properties

Latent Heat of Fusion, J/g 170
180
Maximum Temperature: Mechanical, °C 120
140
Melting Completion (Liquidus), °C 900
860
Melting Onset (Solidus), °C 890
820
Specific Heat Capacity, J/kg-K 380
400
Thermal Conductivity, W/m-K 120
91
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
30
Electrical Conductivity: Equal Weight (Specific), % IACS 29
34

Otherwise Unclassified Properties

Base Metal Price, % relative 23
24
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.7
3.0
Embodied Energy, MJ/kg 47
51
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
90
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
220
Stiffness to Weight: Axial, points 7.2
7.6
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 14 to 17
19
Strength to Weight: Bending, points 15 to 17
18
Thermal Diffusivity, mm2/s 38
28
Thermal Shock Resistance, points 13 to 16
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.5 to 2.5
Antimony (Sb), % 0
0 to 0.080
Copper (Cu), % 59 to 62
51 to 65
Iron (Fe), % 0 to 0.1
0.5 to 2.0
Lead (Pb), % 0 to 0.2
0 to 0.5
Manganese (Mn), % 0
0.3 to 3.0
Nickel (Ni), % 0
0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.1
Tin (Sn), % 0.5 to 1.0
0 to 1.0
Zinc (Zn), % 36.3 to 40.5
19.8 to 47.7
Residuals, % 0 to 0.4
0