MakeItFrom.com
Menu (ESC)

C46400 Brass vs. Grade 705C Zirconium

C46400 brass belongs to the copper alloys classification, while grade 705C zirconium belongs to the otherwise unclassified metals. There are 20 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is grade 705C zirconium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
98
Elongation at Break, % 17 to 40
13
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
36
Tensile Strength: Ultimate (UTS), MPa 400 to 500
540
Tensile Strength: Yield (Proof), MPa 160 to 320
390

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Specific Heat Capacity, J/kg-K 380
270
Thermal Conductivity, W/m-K 120
18
Thermal Expansion, µm/m-K 21
5.7

Otherwise Unclassified Properties

Density, g/cm3 8.0
6.7
Embodied Water, L/kg 330
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
66
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
790
Stiffness to Weight: Axial, points 7.2
8.1
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 14 to 17
22
Strength to Weight: Bending, points 15 to 17
22
Thermal Diffusivity, mm2/s 38
9.9
Thermal Shock Resistance, points 13 to 16
69

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.1
Copper (Cu), % 59 to 62
0
Hafnium (Hf), % 0
0 to 4.5
Hydrogen (H), % 0
0 to 0.0050
Iron (Fe), % 0 to 0.1
0 to 0.3
Lead (Pb), % 0 to 0.2
0
Niobium (Nb), % 0
2.0 to 3.0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.0
0
Zinc (Zn), % 36.3 to 40.5
0
Zirconium (Zr), % 0
91.9 to 98
Residuals, % 0 to 0.4
0