MakeItFrom.com
Menu (ESC)

C46400 Brass vs. Nickel 825

C46400 brass belongs to the copper alloys classification, while nickel 825 belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is nickel 825.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 17 to 40
34
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
78
Shear Strength, MPa 270 to 310
430
Tensile Strength: Ultimate (UTS), MPa 400 to 500
650
Tensile Strength: Yield (Proof), MPa 160 to 320
260

Thermal Properties

Latent Heat of Fusion, J/g 170
300
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 900
1400
Melting Onset (Solidus), °C 890
1370
Specific Heat Capacity, J/kg-K 380
460
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 29
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 23
41
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.7
7.2
Embodied Energy, MJ/kg 47
100
Embodied Water, L/kg 330
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
180
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
170
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 14 to 17
22
Strength to Weight: Bending, points 15 to 17
20
Thermal Diffusivity, mm2/s 38
2.9
Thermal Shock Resistance, points 13 to 16
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.2
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19.5 to 23.5
Copper (Cu), % 59 to 62
1.5 to 3.0
Iron (Fe), % 0 to 0.1
22 to 37.9
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
38 to 46
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.0
0
Titanium (Ti), % 0
0.6 to 1.2
Zinc (Zn), % 36.3 to 40.5
0
Residuals, % 0 to 0.4
0