MakeItFrom.com
Menu (ESC)

C46400 Brass vs. C81500 Copper

Both C46400 brass and C81500 copper are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 17 to 40
17
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 400 to 500
350
Tensile Strength: Yield (Proof), MPa 160 to 320
280

Thermal Properties

Latent Heat of Fusion, J/g 170
210
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 900
1090
Melting Onset (Solidus), °C 890
1080
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
320
Thermal Expansion, µm/m-K 21
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
82
Electrical Conductivity: Equal Weight (Specific), % IACS 29
83

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 8.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 47
41
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
56
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
330
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 14 to 17
11
Strength to Weight: Bending, points 15 to 17
12
Thermal Diffusivity, mm2/s 38
91
Thermal Shock Resistance, points 13 to 16
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 59 to 62
97.4 to 99.6
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 0 to 0.2
0 to 0.020
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0.5 to 1.0
0 to 0.1
Zinc (Zn), % 36.3 to 40.5
0 to 0.1
Residuals, % 0 to 0.4
0 to 0.5