MakeItFrom.com
Menu (ESC)

C46400 Brass vs. N06058 Nickel

C46400 brass belongs to the copper alloys classification, while N06058 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C46400 brass and the bottom bar is N06058 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
220
Elongation at Break, % 17 to 40
45
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
86
Shear Strength, MPa 270 to 310
600
Tensile Strength: Ultimate (UTS), MPa 400 to 500
860
Tensile Strength: Yield (Proof), MPa 160 to 320
410

Thermal Properties

Latent Heat of Fusion, J/g 170
330
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 900
1540
Melting Onset (Solidus), °C 890
1490
Specific Heat Capacity, J/kg-K 380
420
Thermal Conductivity, W/m-K 120
9.8
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
70
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 47
170
Embodied Water, L/kg 330
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 76 to 140
320
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 500
370
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 14 to 17
27
Strength to Weight: Bending, points 15 to 17
23
Thermal Diffusivity, mm2/s 38
2.6
Thermal Shock Resistance, points 13 to 16
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 59 to 62
0 to 0.5
Iron (Fe), % 0 to 0.1
0 to 1.5
Lead (Pb), % 0 to 0.2
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
19 to 21
Nickel (Ni), % 0
52.2 to 61
Nitrogen (N), % 0
0.020 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.5 to 1.0
0
Tungsten (W), % 0
0 to 0.3
Zinc (Zn), % 36.3 to 40.5
0
Residuals, % 0 to 0.4
0