MakeItFrom.com
Menu (ESC)

C46500 Brass vs. CC766S Brass

Both C46500 brass and CC766S brass are copper alloys. They have a very high 97% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C46500 brass and the bottom bar is CC766S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 18 to 50
28
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 380 to 610
500
Tensile Strength: Yield (Proof), MPa 190 to 490
190

Thermal Properties

Latent Heat of Fusion, J/g 170
180
Maximum Temperature: Mechanical, °C 120
130
Melting Completion (Liquidus), °C 900
840
Melting Onset (Solidus), °C 890
800
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 120
89
Thermal Expansion, µm/m-K 21
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
32
Electrical Conductivity: Equal Weight (Specific), % IACS 29
36

Otherwise Unclassified Properties

Base Metal Price, % relative 23
24
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 1170
180
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 13 to 21
17
Strength to Weight: Bending, points 15 to 20
18
Thermal Diffusivity, mm2/s 38
28
Thermal Shock Resistance, points 13 to 20
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.3 to 1.8
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0.020 to 0.060
0
Copper (Cu), % 59 to 62
58 to 64
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0 to 0.2
0 to 0.5
Manganese (Mn), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 2.0
Silicon (Si), % 0
0 to 0.6
Tin (Sn), % 0.5 to 1.0
0 to 0.5
Zinc (Zn), % 36.2 to 40.5
29.5 to 41.7
Residuals, % 0 to 0.4
0